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Abstract

The space-charge limit is imposed by beam response
to low-order machine resonances. Here, the coherent re-
sponse of the beam to such resonances is discussed, in-
cluding the parametric resonance of collective beam modes
with the periodic lattice, also known as the ”envelope insta-
bility”, when the second-order beam modes are considered.
The relation of this parametric resonance to the coherent
resonance condition of an integer type is explained. Practi-
cal application of such resonant responses to both structural
and imperfection driven harmonics is addressed.

INTRODUCTION

When choosing the operating point in the tune space,
one carefully avoids resonances driven by the lattice peri-
odicity (structure resonances). However, unavoidable pres-
ence of errors in the magnetic field sets restrictions asso-
ciated with the imperfection resonances. As a result, the
condition that the individual particle tune should not be
depressed by the space charge to integer or half-integer
values is known as the space-charge limit. We note that
such a definition of the space charge limit is different from
the one used in a special class of circular machines (for
example, in cooler rings) where additional efforts are un-
dertaken to compensate for emittance growth. The maxi-
mum achievable intensity associated with crossing of the
integer or half-integer tunes was first formulated using the
single-particle approach. Subsequently, a more accurate
treatment of collective beam dynamics gave better under-
standing of the beam response to such resonances [1]-[2].
Such a coherent resonance condition, corresponding to the
half-integer single-particle resonance (n/2 =ν, where
ν = ν0 − ∆νsc andν0 is the zero-current tune), is

n = Ω2 = 2ν0 − ∆Ω2,sc, (1)

whereΩ2 is the frequency of the 2nd order coherent os-
cillation mode of the beam. The coherent resonance con-
dition in Eq. 1 was first derived using an approximation
of smooth focusing. Subsequently, it was shown that AG
focusing can lead to an additional subset of collective in-
stabilities [3]. Such an instability due to the lattice period-
icity, corresponds to a coherent resonance of the parametric
(half-integer) type:

n/2 = Ω2, (2)
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also known as the ”envelope instability” [4]. As one can
see from Eq. 2, the envelope instability limits the allow-
able tune space to only0.25 and thus may have an ad-
ditional impact on the performance of high-intensity ma-
chines. It is therefore extremely important to understand
when such envelope instability should be taken into ac-
count, and whether it can alter the space-charge limit gov-
erned by Eq. 1. The primary goal of this paper is to ex-
plain the difference between the coherent integer and half-
integer envelope responses and provide practical guide-
lines for consideration of the envelope instability in rings.
For completeness, we also discuss coherent resonances for
high-order beam modes.

GENERAL ANALYSIS

We start with them = 2 modes, allowing us to employ
the envelope equation:

a′′ + K(s)a − ε2

a3
− κ

a
= 0, (3)

whereK(s) is the periodic focusing function,ε is the beam
emittance,κ is the space charge parameter, anda is the
radius of a round beam. For simplicity, we replace the
periodic focusing by a time-dependent perturbation. The
linearized envelope equation for small oscillations[a →
a0(1 + u)] is then

u′′ +Ω2
2u+(nt) = (1+u)ν2

0

∑

n

αn cos(nθ)+(nt), (4)

wherent stands for ”nonlinear terms”. If the coefficientαn

becomes large, as in the case of periodic focusing, a more
accurate treatment of the stationary state is required [5]. In
Eq. 4, the term which drives matched periodic oscillation of
the beam envelope and the term which describes the oscil-
lations around such a periodic solution are both kept on the
r.h.s., for comparison. In principle, these two terms should
be treated separately, since the first term is just the closed
orbit solution (matched solution in the presence of a time
dependent perturbation). However, when only the second
term is kept, as typically done to consider beam stability as
a result of periodic focusing, an important implication of
the first term may be overlooked. In particular, the resonant
growth of such stationary solutions near the half-integer
tunes, due to the first term, becomes an important effect,
known as Smith/Sacherer space-charge induced coherent
beam response to the imperfection resonances. Here, the



resonant response is considered both for the case when the
integer and half-integer coherent response occurs at differ-
ent tunes, as well as when the driving harmonics provide a
resonance condition for both resonances at the same tune.

The first term on the r.h.s. of Eq. 4 corresponds to an
integerΩ2 = n1 coherent resonance of the beam enve-
lope with harmonicn1, which occurs near the half-integer
single-particle tunes. The second term on the r.h.s. of Eq. 4
gives the coherent resonance of the half-integer (paramet-
ric) type: Ω2 = n2/2, wheren2 is now another harmonic
different fromn1. The limitation due to this linear para-
metric resonance of the envelope modes with the periodic
focusing structure suggests a design with the zero-current
single-particle phase advanceσ0 per focusing period below
900. In rings, such a condition corresponds to the struc-
ture resonance which occurs near the single-particle tunes
ν = N/4 with N being the structure harmonic. However,
the structure resonances are typically avoided by the choice
of the operating tune-box resulting in the limitation due
the imperfection resonances. Note that in a special class
of rings (such as cooler rings), where additional measures
are undertaken to compensate emittance growth due to the
crossing of the imperfection resonances, one recovers the
situation as in linear transport systems.

Resonance strength

The width of the linear parametric resonance is [5]:

∆ε ≈ ν2
0

2Ω
αn =

ν2
0

2
√

2
√

1 + η2
αn, (5)

where, as an example, we substituted forΩ the frequency
of the in-phase mode, withη being the tune depression de-
fined asη = ν/ν0. It depends linearly on the strength of
the imperfection errorαn (to first order). Such a strength is
very small for typical imperfection errors (much less than
the 1% level). As a result, the corresponding resonance
is expected to be very narrow and the envelope growth is
detuned at a very low level due to the non-linear terms in
Eq. 4, which was confirmed by numerical simulation [6].
This is, in fact, the reason why the effect of the envelope
instability in rings is negligible, provided that the tune-box
is chosen free of the structure resonances and only imper-
fection harmonics are of a concern.

On the contrary, when the source of the parametric driv-
ing term in Eq. 4 is due to the periodicity of the lattice, the
width of the resonance may become significant. Strictly
speaking, a perturbation approach is not applicable for very
largeαn, and one needs to solve the exact equation with pe-
riodic focusing numerically. This defines the stopbands of
the structure resonances which should be avoided.

Combined resonance response

If the zero-current tune is chosen in the tune-box free
from the structure resonances then the effect of the para-
metric envelope resonance due to the imperfection harmon-
ics at1/4 tunes is negligible. Also, there is no integer-type

0.9996

0.9998

1.0000

1.0002

1.0004

gr
ow

th
fa

ct
or

/e
rr

or
pe

riod

6.15 6.2 6.25 6.3 6.35

tune

Figure 1: Growth factors for imperfection driven envelope
instability with working pointν0x,y = 6.333 and a large
error of 4%in harmonicn = 25.

envelope growth at such tune values with the stationary so-
lution for periodic oscillations of the beam envelopes being
well defined. When one approaches the integer or half-
integer tunes, this results in a periodic growth of the beam
envelopes which is described by the coherent integer re-
sponse in Eq. 1. At such tunes there is also the possibility
of parametric growth of the envelopes due to higher har-
monics. For the parametric resonance to take place at such
tunes, the stopband of the parametric resonance (due to the
αn2 ) should be much larger than the integer stopband due
to theαn1 . For example, in the PSR LANL lattice with
the zero-current betatron tune aboveν = 2.5, the para-
metric resonance of the beam envelope would take place
at high-intensity operation. This is because the strength of
then = 10 harmonic (α10) is much larger than that of the
n = 5 (α5) harmonic, sincen = 5 is a weak imperfection
harmonic whilen = 10 is the strongest harmonic with the
lattice super-periodicityP = 10 [8].

Extension to non-linear modes

For the case of the non-linear imperfection errors one
has to consider tune values near the corresponding imper-
fection resonances. Similar to them = 2 modes, the high-
order modes can have resonant growth near

n = Ωm, (6)

which is the coherent resonance condition for any order
beam modeΩm derived by Sacherer [2]. To derive such
a resonance condition form > 2 modes one needs to use
either high-order beam moment equations or the Vlasov
equation. In addition, the effect of the periodic focus-
ing adds the possibility ofΩm resonating at the half-
integers, which corresponds the parametric resonance of
beam modes [7]:

n/2 = Ωm. (7)

The practical discussion for the typical strength of an im-
perfection error is now similar to the discussion for the
m = 2 modes [5].

For completeness, we note that in the absence of non-
linear imperfections, the periodic oscillation of high-order



beam modes is now well defined so that the condition
n = Ωm no longer applies, and stability is now determined
solely by the parametric conditionn/2 = Ωm [7]. In fact,
this becomes the dominant effect in the high-current trans-
port channel or cooler rings. With harmonicn now being
the structure harmonic, the beam encounters a whole set of
instabilities during the space-charge tune depression. Such
instabilities were first numerically explored in connection
with transport channels [3], and recently were analytically
described using the terminology of resonances with an ap-
plication to cooler rings [7].

When the beam has a large mismatch, the nonlinear
terms ignored in the linearized approach can play an im-
portant role. In such a very general case, the condition for
the non-linear parametric resonance is [5]:

n/k = Ωm, (8)

wherek now stands for the exponent of the non-linear term
in the driving potential. This is similar to the non-linear
envelope resonancesn/k = Ω2 when the beam envelopes
are mismatched [9]. Also note that in such a form, the res-
onance condition applies also for the coupling resonances,
since the subscriptm only indicates the order of the mode.

NUMERICAL ANALYSIS

Imperfection envelope instability

We used the KVXYG [4] code, which determines the
growth factors of the envelope perturbations. A paramet-
ric resonance of the beam envelope may be expected in
a lattice with a working point above1/4 tunes. We have
taken a constant focusing lattice withν0x,y = 6.333 and a
25-th harmonic gradient error, which impliesσ0 = 91.20

per error harmonic. For a large error of4%, only very
narrow stopbands of the out-of-phase and in-phase modes
are found atσ = 89.590 and σ = 88.780 (correspond-
ing to νx,y = 6.222 andνx,y = 6.165), respectively. We
also confirmed that for errors of2% and1%, the width of
these stopbands decreases linearly with the error strength,
in agreement with the stopband of the parametric resonance
given in Eq. 5. As a result, the instability gets detuned at
a very low level. This allows the conclusion [6] that the
imperfection driven envelope instability for working points
above the fractional quarter-integer tunes can be ignored.

Structure envelope instability

The case of the parametric resonance of the beam enve-
lope with the structure lattice harmonics is similar to the
one studied with application to the transport channels or
cooler rings. As an example, for a working point above
ν0x,y = 6, as in the SNS, and the lattice which consists
of 24 basic cells, we calculated the instability stopband for
a cell withσ0 = 960 corresponding toν0x,y = 6.4 (here
ν0 = Nσ0/(2π), whereN is the number of cells in the
lattice). We noted that a pronounced instability stopband
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Figure 2: Growth factors for structure driven envelope in-
stability with zero-current phase advance ofσ0 = 960, cor-
responding toν0x,y = 6.4.

(Fig. 2) with a growth factor above unity starts for full-
current phase advanceσ < 88.840 (corresponding to a tune
νx,y = 5.92). The strong flutter of the matched FODO en-
velope couples the in-phase and out-of-phase eigenmodes
and leads to a single stopband. In a realistic lattice one
tries to avoid structure resonances by choosing the work-
ing point correspondingly.

SUMMARY

We examined the impact of integer and half-integer res-
onances of the collective beam modes on intensity limita-
tion in the high-intensity rings. The imperfection driven
resonance of the beam envelopes was found to be negligi-
ble. As a result, it is not expected to impose an additional
restriction in the tune space.
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